54 research outputs found

    Non-serotinous woody plants behave as aerial seed bank species when a late-summer wildfire coincides with a mast year

    Get PDF
    1. Trees which lack obvious fire-adaptive traits such as serotinous seed-bearing structures or vegetative resprouting are assumed to be at a dramatic disadvantage in recolonization via sexual recruitment after fire, because seed dispersal is invariably quite constrained. We propose an alternative strategy in masting tree species with woody cones or cone-like structures: that the large clusters of woody tissue in a mast year will sufficiently impede heat transfer that a small fraction of seeds can survive the flaming front passage; in a mast year, this small fraction would be a very large absolute number. 2. In Kootenay National Park in British Columbia, we examined regeneration by Engelmann spruce (Picea engelmannii), a non-serotinous conifer, after two fires, both of which coincided with mast years. Coupling models of seed survivorship within cones and seed maturation schedule to a spatially realistic recruitment model, we show that (1) the spatial pattern of seedlings on a 630 m transect from the forest edge into the burn was best explained if there was in situ seed dissemination by burnt trees; (2) in areas several hundred meters from any living trees, recruitment density was well correlated with local prefire cone density; and (3) spruce was responding exactly like its serotinous codominant, lodgepole pine (Pinus contorta). 3. We conclude that non-serotinous species can indeed behave like aerial seed bank species in mast years if the fire takes place late in the seed maturation period. Using the example of the circumpolar boreal forest, while the joint probability of a mast year and a late-season fire will make this type of event rare (we estimate P = 0.1), nonetheless, it would permit a species lacking obvious fire-adapted traits to occasionally establish a widespread and abundant cohort on a large part of the landscape

    Intraspecific Trait Variation and Phenotypic Plasticity Mediate Alpine Plant Species Response to Climate Change

    Get PDF
    In a rapidly changing climate, alpine plants may persist by adapting to new conditions. However, the rate at which the climate is changing might exceed the rate of adaptation through evolutionary processes in long-lived plants. Persistence may depend on phenotypic plasticity in morphology and physiology. Here we investigated patterns of leaf trait variation including leaf area, leaf thickness, specific leaf area, leaf dry matter content, leaf nutrients (C, N, P) and isotopes (δ13C and δ15N) across an elevation gradient on Gongga Mountain, Sichuan Province, China. We quantified inter- and intra-specific trait variation and the plasticity in leaf traits of selected species to experimental warming and cooling by using a reciprocal transplantation approach. We found substantial phenotypic plasticity in most functional traits where δ15N, leaf area, and leaf P showed greatest plasticity. These traits did not correspond with traits with the largest amount of intraspecific variation. Plasticity in leaf functional traits tended to enable plant populations to shift their trait values toward the mean values of a transplanted plants’ destination community, but only if that population started with very different trait values. These results suggest that leaf trait plasticity is an important mechanism for enabling plants to persist within communities and to better tolerate changing environmental conditions under climate change

    The acquisitive–conservative axis of leaf trait variation emerges even in homogeneous environments

    Get PDF
    The acquisitive-conservative axis of plant ecological strategies results in a pattern of leaf trait covariation that captures the balance between leaf construction costs and plant growth potential. Studies evaluating trait covariation within species are scarcer, and have mostly dealt with variation in response to environmental gradients. Little work has been published on intraspecific patterns of leaf trait covariation in the absence of strong environmental variation.Methods: We analysed covariation of four leaf functional traits (SLA: specific leaf area, LDMC: leaf dry matter content, Ft: force to tear, and Nm: leaf nitrogen content) in six Poaceae and four Fabaceae species common in the dry Chaco forest of Central Argentina, growing in the field and in a common garden. We compared intraspecific covariation patterns (slopes, correlation and effect size) of leaf functional traits with global interspecific covariation patterns. Additionally, we checked for possible climatic and edaphic factors that could affect the intraspecific covariation pattern.Key Results: We found negative correlations for the LDMC-SLA, Ft-SLA, LDMC-Nm , and Ft-Nm trait pairs. This intraspecific covariation pattern found both in the field and in the common garden and not be explained by climatic or edaphic variation in the field follows the expected acquisitive-conservative axis. At the same time, we found quantitative differences in slopes among different species, and between these intraspecific patterns and the interspecific ones. Many of these differences seem to be idiosyncratic, but some appear consistent among species (e.g.all the intraspecific LDMC-SLA and LDMC-Nm slopes tend to be shallower than the global).Conclusions: Our study indicates that the acquisitive-conservative leaf functional trait covariation pattern occurs at the intraspecific level even in the absence of relevant environmental variation in the field. This suggests a high degree of variation-covariation in leaf functional traits not driven by environmental variables.Fil: Gorne, Lucas Damián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; ArgentinaFil: Díaz, Sandra Myrna. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; ArgentinaFil: Minden, Vanessa. University of Oldenburg; Alemania. Vrije Universiteit Brussel; BélgicaFil: Onoda, Yusuke. Kyoto University. School of Agriculture; JapónFil: Kramer, Koen. Wageningen University; Países BajosFil: Muir, Christopher. University Of Hawaii; Estados UnidosFil: Michaletz, Sean T. University of British Columbia; CanadáFil: Lavorel, Sandra. Centre National de la Recherche Scientifique; FranciaFil: Sharpe, Joanne. Sharplex Services, Edgecomb; Estados UnidosFil: Jansen, Steven. Universitat Ulm; AlemaniaFil: Slot, Martijn. Smithsonian Tropical Research Institute; PanamáFil: Chacon, Maximiliano Eduardo. Universidad de Costa Rica; Costa RicaFil: Boenisch, Gerhard. Max Planck Institute For Biogeochemistry; Alemani

    Intraspecific trait variability is a key feature underlying high Arctic plant community resistance to climate warming

    Get PDF
    In the high Arctic, plant community species composition generally responds slowly to climate warming, whereas less is known about the community functional trait responses and consequences for ecosystem functioning. The slow species turnover and large distribution ranges of many Arctic plant species suggest a significant role of intraspecific trait variability in functional responses to climate change. Here we compare taxonomic and functional community compositional responses to a long-term (17-year) warming experiment in Svalbard, Norway, replicated across three major high Arctic habitats shaped by topography and contrasting snow regimes. We observed taxonomic compositional changes in all plant communities over time. Still, responses to experimental warming were minor and most pronounced in the drier habitats with relatively early snowmelt timing and long growing seasons (Cassiope and Dryas heaths). The habitats were clearly separated in functional trait space, defined by 12 size- and leaf economics-related traits, primarily due to interspecific trait variation. Functional traits also responded to experimental warming, most prominently in the Dryas heath and mostly due to intraspecific trait variation. Leaf area and mass increased and leaf δ15N decreased in response to the warming treatment. Intraspecific trait variability ranged between 30% and 71% of the total trait variation, reflecting the functional resilience of those communities, dominated by long-lived plants, due to either phenotypic plasticity or genotypic variation, which most likely underlies the observed resistance of high Arctic vegetation to climate warming. We further explored the consequences of trait variability for ecosystem functioning by measuring peak season CO2 fluxes. Together, environmental, taxonomic, and functional trait variables explained a large proportion of the variation in net ecosystem exchange (NEE), which increased when intraspecific trait variation was accounted for. In contrast, even though ecosystem respiration and gross ecosystem production both increased in response to warming across habitats, they were mainly driven by the direct kinetic impacts of temperature on plant physiology and biochemical processes. Our study shows that long-term experimental warming has a modest but significant effect on plant community functional trait composition and suggests that intraspecific trait variability is a key feature underlying high Arctic ecosystem resistance to climate warming.publishedVersio

    Tree water dynamics in a drying and warming world

    Get PDF
    Disentangling the relative impacts of precipitation reduction and vapour pressure deficit (VPD) on plant water dynamics and determining whether acclimation may influence these patterns in the future is an important challenge. Here, we report sap flux density (FD), stomatal conductance (Gs), hydraulic conductivity (KL) and xylem anatomy in piñon pine (Pinus edulis) and juniper (Juniperus monosperma) trees subjected to five years of precipitation reduction, atmospheric warming (elevated VPD) and their combined effects. No acclimation occurred under precipitation reduction: lower Gs and FD were found for both species compared to ambient conditions. Warming reduced the sensibility of stomata to VPD for both species but resulted in the maintenance of Gs and FD to ambient levels only for piñon. For juniper, reduced soil moisture under warming negated benefits of stomatal adjustments and resulted in reduced FD, Gs and KL. Although reduced stomatal sensitivity to VPD also occurred under combined stresses, reductions in Gs, FD and KL took place to similar levels as under single stresses for both species. Our results show that stomatal conductance adjustments to high VPD could minimize but not entirely prevent additive effects of warming and drying on water use and carbon acquisition of trees in semi-arid regions.The Los Alamos Survival-Mortality (SUMO) Experiment was funded by the US Department of Energy, Office of Science, Biological and Environmental Research. C.G. and S.M. were supported by a Director’s Fellowship from the Los Alamos National Laboratory. A.V. was supported by a fellowship from Generalitat Valenciana (BEST/2016/289) and the project Survive-2 (CGL2015-69773-C2-2-P MINECO/FEDER) from the Spanish Government. CEAM is funded by Generalitat Valenciana

    Multiscale mapping of plant functional groups and plant traits in the High Arctic using field spectroscopy, UAV imagery and Sentinel-2A data

    Get PDF
    The Arctic is warming twice as fast as the rest of the planet, leading to rapid changes in species composition and plant functional trait variation. Landscape-level maps of vegetation composition and trait distributions are required to expand spatially-limited plot studies, overcome sampling biases associated with the most accessible research areas, and create baselines from which to monitor environmental change. Unmanned aerial vehicles (UAVs) have emerged as a low-cost method to generate high-resolution imagery and bridge the gap between fine-scale field studies and lower resolution satellite analyses. Here we used field spectroscopy data (400-2500 nm) and UAV multispectral imagery to test spectral methods of species identification and plant water and chemistry retrieval near Longyearbyen, Svalbard. Using the field spectroscopy data and Random Forest analysis, we were able to distinguish eight common High Arctic plant tundra species with 74% accuracy. Using partial least squares regression (PLSR), we were able to predict corresponding water, nitrogen, phosphorus and C:N values (r (2) = 0.61-0.88, RMSEmean = 12%-64%). We developed analogous models using UAV imagery (five bands: Blue, Green, Red, Red Edge and Near-Infrared) and scaled up the results across a 450 m long nutrient gradient located underneath a seabird colony. At the UAV level, we were able to map three plant functional groups (mosses, graminoids and dwarf shrubs) at 72% accuracy and generate maps of plant chemistry. Our maps show a clear marine-derived fertility gradient, mediated by geomorphology. We used the UAV results to explore two methods of upscaling plant water content to the wider landscape using Sentinel-2A imagery. Our results are pertinent for high resolution, low-cost mapping of the Arctic.Peer reviewe
    • …
    corecore